Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
2
233
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Tobias Barham
  • 233
  • Issues
  • #1

Closed
Open
Opened Apr 06, 2025 by Tobias Barham@tobiasbarham0Maintainer
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library created to facilitate the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research study, making published research study more easily reproducible [24] [144] while supplying users with a simple interface for engaging with these environments. In 2022, new advancements of Gym have actually been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research on computer game [147] utilizing RL algorithms and trademarketclassifieds.com research study generalization. Prior RL research focused mainly on optimizing representatives to resolve single tasks. Gym Retro offers the capability to generalize between games with similar principles but various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot representatives at first do not have understanding of how to even stroll, however are provided the objectives of finding out to move and to push the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives learn how to adapt to altering conditions. When a representative is then gotten rid of from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, suggesting it had learned how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition in between agents could develop an intelligence "arms race" that might increase an agent's capability to work even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots used in the competitive five-on-five video game Dota 2, that find out to play against human players at a high skill level entirely through trial-and-error algorithms. Before ending up being a team of 5, the first public demonstration happened at The International 2017, the yearly premiere champion competition for the game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually match. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of actual time, and that the learning software application was an action in the direction of developing software application that can deal with complicated jobs like a cosmetic surgeon. [152] [153] The system uses a kind of support learning, as the bots find out with time by playing against themselves numerous times a day for months, and are rewarded for actions such as eliminating an enemy and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a complete team of 5, and they had the ability to beat groups of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against professional gamers, however ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public appearance came later on that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5's systems in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online battle arena (MOBA) games and how OpenAI Five has demonstrated using deep reinforcement knowing (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine discovering to train a Shadow Hand, a human-like robotic hand, to control physical items. [167] It discovers totally in simulation utilizing the very same RL algorithms and training code as OpenAI Five. OpenAI took on the things orientation issue by using domain randomization, a simulation approach which exposes the learner to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB cams to allow the robotic to control an approximate object by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI demonstrated that Dactyl could resolve a Rubik's Cube. The robotic had the ability to fix the puzzle 60% of the time. Objects like the Rubik's Cube present complicated physics that is harder to model. OpenAI did this by enhancing the robustness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of producing progressively more hard environments. ADR varies from manual domain randomization by not requiring a human to define randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs established by OpenAI" to let developers contact it for "any English language AI job". [170] [171]
Text generation

The company has actually promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was written by Alec Radford and his colleagues, and released in preprint on OpenAI's site on June 11, 2018. [173] It demonstrated how a generative model of language could obtain world knowledge and process long-range reliances by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a without supervision transformer language design and the follower to OpenAI's original GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative variations initially launched to the general public. The full variation of GPT-2 was not instantly released due to concern about potential abuse, including applications for writing fake news. [174] Some specialists expressed uncertainty that GPT-2 posed a considerable danger.

In response to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the innovation to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the complete version of the GPT-2 language model. [177] Several websites host interactive demonstrations of various instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language models to be general-purpose students, shown by GPT-2 attaining advanced precision and perplexity on 7 of 8 zero-shot jobs (i.e. the design was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by using byte pair encoding. This allows representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a not being watched transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI specified that the full version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude larger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 models with as couple of as 125 million criteria were likewise trained). [186]
OpenAI mentioned that GPT-3 was successful at certain "meta-learning" tasks and might generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer learning between English and Romanian, and in between English and German. [184]
GPT-3 significantly improved benchmark results over GPT-2. OpenAI cautioned that such scaling-up of language designs might be approaching or encountering the fundamental capability constraints of predictive language designs. [187] Pre-training GPT-3 needed several thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained design was not instantly launched to the general public for issues of possible abuse, although OpenAI prepared to permit gain access to through a paid cloud API after a two-month complimentary personal beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually additionally been trained on code from 54 million GitHub repositories, [192] [193] and wavedream.wiki is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in personal beta. [194] According to OpenAI, the design can produce working code in over a dozen shows languages, most successfully in Python. [192]
Several issues with glitches, style flaws and security vulnerabilities were pointed out. [195] [196]
GitHub Copilot has actually been accused of giving off copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They revealed that the updated technology passed a simulated law school bar test with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise check out, evaluate or generate up to 25,000 words of text, and compose code in all significant shows languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caution that GPT-4 retained a few of the issues with earlier modifications. [201] GPT-4 is likewise capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal different technical details and stats about GPT-4, such as the precise size of the design. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and launched GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained modern lead to voice, multilingual, and vision standards, setting brand-new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be particularly helpful for enterprises, start-ups and developers looking for to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have been designed to take more time to think of their responses, causing higher accuracy. These models are particularly efficient in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was changed by o1. [211]
o3

On December 20, 2024, OpenAI revealed o3, the successor of the o1 thinking model. OpenAI likewise revealed o3-mini, a lighter and much faster variation of OpenAI o3. As of December 21, 2024, this model is not available for public usage. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these designs. [214] The model is called o3 rather than o2 to prevent confusion with telecoms companies O2. [215]
Deep research study

Deep research study is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to carry out comprehensive web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) criteria. [120]
Image category

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to analyze the semantic similarity between text and images. It can notably be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and generate corresponding images. It can develop pictures of realistic items ("a stained-glass window with an image of a blue strawberry") as well as things that do not exist in reality ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded version of the model with more reasonable results. [219] In December 2022, OpenAI released on GitHub software application for Point-E, a new fundamental system for wiki.myamens.com converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI revealed DALL-E 3, a more powerful model better able to generate images from intricate descriptions without manual prompt engineering and render complicated details like hands and text. [221] It was released to the public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can produce videos based on short detailed prompts [223] in addition to extend existing videos forwards or backwards in time. [224] It can generate videos with resolution as much as 1920x1080 or 1080x1920. The maximal length of produced videos is unknown.

Sora's advancement group called it after the Japanese word for "sky", to signify its "endless innovative capacity". [223] Sora's technology is an adaptation of the innovation behind the DALL · E 3 text-to-image design. [225] OpenAI trained the system utilizing publicly-available videos along with copyrighted videos licensed for that purpose, but did not expose the number or the specific sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the public on February 15, 2024, stating that it could generate videos as much as one minute long. It likewise shared a technical report highlighting the methods utilized to train the design, and the model's abilities. [225] It acknowledged a few of its imperfections, including struggles mimicing complicated physics. [226] Will Douglas Heaven of the MIT Review called the presentation videos "remarkable", but kept in mind that they need to have been cherry-picked and might not represent Sora's typical output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demo, noteworthy entertainment-industry figures have actually revealed substantial interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the innovation's ability to produce realistic video from text descriptions, mentioning its potential to reinvent storytelling and content production. He said that his enjoyment about Sora's possibilities was so strong that he had actually chosen to pause plans for broadening his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a large dataset of varied audio and is also a multi-task design that can perform multilingual speech acknowledgment as well as speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can create songs with 10 instruments in 15 designs. According to The Verge, a tune created by MuseNet tends to start fairly but then fall into chaos the longer it plays. [230] [231] In pop culture, initial applications of this tool were used as early as 2020 for the internet mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs song samples. OpenAI specified the tunes "show regional musical coherence [and] follow traditional chord patterns" but acknowledged that the songs do not have "familiar larger musical structures such as choruses that repeat" and that "there is a considerable space" in between Jukebox and human-generated music. The Verge stated "It's technically excellent, even if the results seem like mushy variations of songs that may feel familiar", while Business Insider specified "surprisingly, a few of the resulting songs are appealing and sound legitimate". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches devices to discuss toy problems in front of a human judge. The purpose is to research whether such a method may assist in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of eight neural network designs which are typically studied in interpretability. [240] Microscope was created to analyze the features that form inside these neural networks easily. The designs included are AlexNet, wiki.snooze-hotelsoftware.de VGG-19, different versions of Inception, and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool developed on top of GPT-3 that supplies a conversational interface that permits users to ask concerns in natural language. The system then reacts with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: tobiasbarham0/233#1