Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
D
dancelover
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Margherita Suh
  • dancelover
  • Issues
  • #1

Closed
Open
Opened Jun 01, 2025 by Margherita Suh@margheritasuh9Maintainer
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library created to help with the development of support learning algorithms. It aimed to standardize how environments are specified in AI research, making published research study more quickly reproducible [24] [144] while offering users with a basic user interface for engaging with these environments. In 2022, new advancements of Gym have actually been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for reinforcement knowing (RL) research on video games [147] using RL algorithms and study generalization. Prior RL research focused mainly on optimizing agents to solve single jobs. Gym Retro offers the ability to generalize in between video games with similar ideas however various appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents at first do not have knowledge of how to even walk, but are given the objectives of discovering to move and to push the opposing representative out of the ring. [148] Through this adversarial knowing procedure, the representatives discover how to adjust to altering conditions. When an agent is then removed from this virtual environment and positioned in a brand-new virtual environment with high winds, the agent braces to remain upright, suggesting it had actually learned how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents might create an intelligence "arms race" that could increase an agent's capability to operate even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that discover to play against human gamers at a high ability level entirely through trial-and-error algorithms. Before ending up being a team of 5, the very first public demonstration occurred at The International 2017, the annual best championship competition for the video game, where Dendi, an expert Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for systemcheck-wiki.de 2 weeks of actual time, and that the learning software application was a step in the direction of creating software application that can deal with complicated jobs like a surgeon. [152] [153] The system utilizes a type of support learning, as the bots learn in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an opponent and taking map goals. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a full group of 5, and they were able to defeat teams of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibition matches against professional players, but ended up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champs of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' final public look came later that month, where they played in 42,729 total video games in a four-day open online competitors, winning 99.4% of those video games. [165]
OpenAI 5's systems in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually shown using deep support knowing (DRL) agents to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses machine learning to train a Shadow Hand, a human-like robotic hand, to control physical items. [167] It finds out totally in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the object orientation problem by using domain randomization, a simulation method which exposes the learner to a range of experiences rather than trying to fit to reality. The set-up for Dactyl, aside from having movement tracking electronic cameras, also has RGB video cameras to permit the robot to manipulate an approximate item by seeing it. In 2018, OpenAI revealed that the system had the ability to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could solve a Rubik's Cube. The robotic had the ability to solve the puzzle 60% of the time. Objects like the Rubik's Cube present intricate physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of producing progressively harder environments. ADR differs from manual domain randomization by not needing a human to define randomization ranges. [169]
API

In June 2020, OpenAI revealed a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let designers call on it for "any English language AI job". [170] [171]
Text generation

The company has actually popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his coworkers, and published in preprint on OpenAI's site on June 11, 2018. [173] It showed how a generative design of language might obtain world knowledge and process long-range dependences by pre-training on a varied corpus with long stretches of contiguous text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language design and the successor to OpenAI's original GPT design ("GPT-1"). GPT-2 was revealed in February 2019, with only limited demonstrative versions initially launched to the general public. The complete version of GPT-2 was not right away launched due to issue about potential abuse, including applications for writing fake news. [174] Some experts expressed uncertainty that GPT-2 posed a considerable risk.

In response to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural fake news". [175] Other scientists, such as Jeremy Howard, cautioned of "the technology to completely fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, OpenAI released the total version of the GPT-2 language design. [177] Several websites host interactive presentations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, illustrated by GPT-2 attaining modern accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains somewhat 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both specific characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI stated that the full variation of GPT-3 contained 175 billion specifications, [184] 2 orders of magnitude bigger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 models with as few as 125 million specifications were also trained). [186]
OpenAI stated that GPT-3 succeeded at certain "meta-learning" tasks and could generalize the function of a single input-output pair. The GPT-3 release paper offered examples of translation and cross-linguistic transfer learning in between English and Romanian, and between English and German. [184]
GPT-3 considerably enhanced benchmark outcomes over GPT-2. OpenAI cautioned that such scaling-up of language models might be approaching or experiencing the essential ability constraints of predictive language models. [187] Pre-training GPT-3 required a number of thousand petaflop/s-days [b] of compute, compared to tens of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not immediately launched to the public for issues of possible abuse, although OpenAI planned to enable gain access to through a paid cloud API after a two-month complimentary private beta that started in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the model can create working code in over a lots programming languages, a lot of successfully in Python. [192]
Several concerns with problems, design flaws and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has actually been accused of discharging copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would cease assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They revealed that the upgraded technology passed a simulated law school bar examination with a score around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might also read, analyze or produce up to 25,000 words of text, and write code in all major programs languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an enhancement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is also capable of taking images as input on ChatGPT. [202] OpenAI has actually declined to reveal different technical details and statistics about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and released GPT-4o, which can process and generate text, images and audio. [204] GPT-4o attained advanced results in voice, multilingual, and vision benchmarks, setting new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI released GPT-4o mini, a smaller version of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly useful for enterprises, startups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini designs, which have been developed to take more time to believe about their responses, leading to higher precision. These designs are particularly reliable in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Staff member. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking model. OpenAI also revealed o3-mini, a lighter and faster variation of OpenAI o3. Since December 21, 2024, this design is not available for public use. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security researchers had the chance to obtain early access to these designs. [214] The design is called o3 instead of o2 to prevent confusion with telecommunications services supplier O2. [215]
Deep research study

Deep research is an agent developed by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 design to perform extensive web surfing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With browsing and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic resemblance between text and images. It can notably be used for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to interpret natural language inputs (such as "a green leather bag formed like a pentagon" or "an isometric view of a sad capybara") and generate corresponding images. It can develop images of sensible items ("a stained-glass window with an image of a blue strawberry") in addition to things that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI revealed DALL-E 2, an updated variation of the model with more practical outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a new rudimentary system for converting a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more effective design much better able to generate images from complicated descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based on brief detailed triggers [223] as well as extend existing videos forwards or backwards in time. [224] It can produce videos with resolution as much as 1920x1080 or 1080x1920. The optimum length of generated videos is unknown.

Sora's advancement team called it after the Japanese word for "sky", to represent its "endless creative capacity". [223] Sora's technology is an adaptation of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos accredited for that purpose, but did not reveal the number or the precise sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the public on February 15, 2024, specifying that it could generate videos as much as one minute long. It likewise shared a technical report highlighting the techniques used to train the design, and the design's abilities. [225] It acknowledged a few of its drawbacks, consisting of struggles replicating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "remarkable", however kept in mind that they need to have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, notable entertainment-industry figures have shown substantial interest in the innovation's potential. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the technology's ability to create realistic video from text descriptions, citing its potential to change storytelling and content . He said that his enjoyment about Sora's possibilities was so strong that he had actually chosen to pause prepare for expanding his Atlanta-based movie studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a big dataset of varied audio and is also a multi-task design that can perform multilingual speech acknowledgment as well as speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a song produced by MuseNet tends to begin fairly but then fall under turmoil the longer it plays. [230] [231] In pop culture, preliminary applications of this tool were used as early as 2020 for the web psychological thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to generate music with vocals. After training on 1.2 million samples, the system accepts a genre, artist, and a snippet of lyrics and outputs tune samples. OpenAI stated the tunes "show regional musical coherence [and] follow traditional chord patterns" but acknowledged that the songs lack "familiar bigger musical structures such as choruses that repeat" which "there is a considerable space" in between Jukebox and human-generated music. The Verge mentioned "It's highly excellent, even if the outcomes seem like mushy variations of songs that may feel familiar", while Business Insider mentioned "remarkably, some of the resulting songs are appealing and sound legitimate". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI introduced the Debate Game, which teaches makers to debate toy problems in front of a human judge. The purpose is to research whether such an approach might assist in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every considerable layer and neuron of 8 neural network designs which are frequently studied in interpretability. [240] Microscope was developed to examine the functions that form inside these neural networks easily. The designs included are AlexNet, VGG-19, various versions of Inception, and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool built on top of GPT-3 that offers a conversational user interface that enables users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: margheritasuh9/dancelover#1