Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of expert system (AI) that matches or goes beyond human cognitive abilities across a large range of cognitive tasks. This contrasts with narrow AI, which is restricted to particular jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that greatly exceeds human cognitive capabilities. AGI is considered among the meanings of strong AI.
Creating AGI is a main goal of AI research study and of companies such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research and development tasks across 37 nations. [4]
The timeline for attaining AGI remains a topic of ongoing debate amongst scientists and specialists. As of 2023, some argue that it might be possible in years or years; others preserve it may take a century or longer; a minority think it might never be achieved; and another minority declares that it is currently here. [5] [6] Notable AI researcher Geoffrey Hinton has actually revealed concerns about the quick development towards AGI, recommending it might be accomplished earlier than numerous expect. [7]
There is argument on the specific meaning of AGI and regarding whether contemporary large language designs (LLMs) such as GPT-4 are early kinds of AGI. [8] AGI is a common subject in science fiction and futures studies. [9] [10]
Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many experts on AI have stated that mitigating the threat of human termination positioned by AGI must be a worldwide priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is likewise called strong AI, [18] [19] full AI, [20] human-level AI, [5] human-level smart AI, or basic intelligent action. [21]
Some academic sources book the term "strong AI" for computer programs that experience sentience or awareness. [a] In contrast, weak AI (or narrow AI) has the ability to solve one particular issue however lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the exact same sense as people. [a]
Related ideas include synthetic superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is far more generally intelligent than human beings, [23] while the concept of transformative AI relates to AI having a large effect on society, for example, comparable to the farming or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, competent, expert, virtuoso, and demo.qkseo.in superhuman. For instance, a skilled AGI is defined as an AI that outshines 50% of skilled adults in a wide range of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly defined however with a limit of 100%. They think about large language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have been proposed. Among the leading proposals is the Turing test. However, there are other widely known meanings, and some scientists disagree with the more popular techniques. [b]
Intelligence characteristics
Researchers normally hold that intelligence is required to do all of the following: [27]
reason, usage method, solve puzzles, and make judgments under unpredictability
represent knowledge, consisting of sound judgment knowledge
strategy
discover
- interact in natural language
- if required, incorporate these skills in completion of any offered goal
Many interdisciplinary techniques (e.g. cognitive science, computational intelligence, and decision making) consider additional qualities such as imagination (the ability to form unique mental images and ideas) [28] and autonomy. [29]
Computer-based systems that exhibit a number of these abilities exist (e.g. see computational creativity, automated thinking, choice assistance system, robotic, evolutionary computation, smart representative). There is argument about whether modern-day AI systems possess them to an appropriate degree.
Physical traits
Other abilities are thought about desirable in intelligent systems, as they may affect intelligence or help in its expression. These include: [30]
- the ability to sense (e.g. see, hear, etc), and - the capability to act (e.g. relocation and control things, modification location to explore, and so on).
This consists of the capability to discover and react to danger. [31]
Although the ability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and control items, modification location to explore, etc) can be preferable for some smart systems, [30] these physical abilities are not strictly required for an entity to qualify as AGI-particularly under the thesis that big language models (LLMs) may already be or become AGI. Even from a less optimistic perspective on LLMs, there is no company requirement for an AGI to have a human-like kind; being a silicon-based computational system suffices, supplied it can process input (language) from the external world in location of human senses. This analysis aligns with the understanding that AGI has never ever been proscribed a specific physical embodiment and therefore does not demand a capability for mobility or traditional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to confirm human-level AGI have actually been thought about, consisting of: [33] [34]
The idea of the test is that the maker needs to attempt and pretend to be a male, by responding to concerns put to it, and it will just pass if the pretence is fairly convincing. A significant portion of a jury, who need to not be expert about makers, should be taken in by the pretence. [37]
AI-complete problems
A problem is informally called "AI-complete" or "AI-hard" if it is believed that in order to resolve it, one would require to execute AGI, due to the fact that the service is beyond the abilities of a purpose-specific algorithm. [47]
There are numerous issues that have actually been conjectured to need general intelligence to solve as well as human beings. Examples include computer system vision, natural language understanding, and dealing with unanticipated scenarios while resolving any real-world problem. [48] Even a specific task like requires a maker to check out and write in both languages, follow the author's argument (reason), understand the context (knowledge), and faithfully replicate the author's original intent (social intelligence). All of these issues require to be fixed at the same time in order to reach human-level machine performance.
However, much of these tasks can now be carried out by contemporary large language models. According to Stanford University's 2024 AI index, AI has actually reached human-level performance on lots of criteria for reading comprehension and visual reasoning. [49]
History
Classical AI
Modern AI research started in the mid-1950s. [50] The first generation of AI scientists were convinced that synthetic general intelligence was possible and that it would exist in simply a few decades. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a male can do." [52]
Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers thought they might develop by the year 2001. AI pioneer Marvin Minsky was a consultant [53] on the project of making HAL 9000 as practical as possible according to the consensus forecasts of the time. He said in 1967, "Within a generation ... the issue of developing 'synthetic intelligence' will substantially be fixed". [54]
Several classical AI projects, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it ended up being apparent that researchers had actually grossly underestimated the difficulty of the project. Funding agencies became hesitant of AGI and put scientists under increasing pressure to produce useful "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that consisted of AGI goals like "continue a casual discussion". [58] In response to this and the success of expert systems, both market and government pumped money into the field. [56] [59] However, self-confidence in AI spectacularly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never fulfilled. [60] For the second time in twenty years, AI researchers who anticipated the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a credibility for making vain promises. They became reluctant to make forecasts at all [d] and prevented mention of "human level" artificial intelligence for worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research
In the 1990s and early 21st century, mainstream AI accomplished business success and academic respectability by concentrating on particular sub-problems where AI can produce proven results and commercial applications, such as speech acknowledgment and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation industry, and research in this vein is greatly moneyed in both academia and industry. As of 2018 [upgrade], advancement in this field was thought about an emerging trend, and a mature stage was expected to be reached in more than ten years. [64]
At the turn of the century, numerous mainstream AI scientists [65] hoped that strong AI could be established by combining programs that solve numerous sub-problems. Hans Moravec wrote in 1988:
I am positive that this bottom-up route to expert system will one day meet the traditional top-down path more than half way, prepared to offer the real-world skills and the commonsense knowledge that has been so frustratingly elusive in reasoning programs. Fully intelligent devices will result when the metaphorical golden spike is driven joining the two efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by specifying:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches someplace in between. If the grounding factors to consider in this paper stand, then this expectation is hopelessly modular and there is really only one practical path from sense to signs: from the ground up. A free-floating symbolic level like the software application level of a computer system will never ever be reached by this path (or vice versa) - nor is it clear why we ought to even try to reach such a level, because it looks as if getting there would just total up to uprooting our symbols from their intrinsic meanings (thus simply minimizing ourselves to the practical equivalent of a programmable computer system). [66]
Modern artificial general intelligence research
The term "synthetic general intelligence" was used as early as 1997, by Mark Gubrud [67] in a discussion of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI representative maximises "the ability to satisfy objectives in a large range of environments". [68] This kind of AGI, identified by the capability to increase a mathematical definition of intelligence rather than display human-like behaviour, [69] was also called universal synthetic intelligence. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summer season school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was offered in 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a number of visitor speakers.
Since 2023 [update], a little number of computer researchers are active in AGI research, and lots of add to a series of AGI conferences. However, significantly more scientists have an interest in open-ended knowing, [76] [77] which is the idea of permitting AI to constantly find out and innovate like human beings do.
Feasibility
Since 2023, the advancement and prospective accomplishment of AGI stays a subject of intense dispute within the AI neighborhood. While standard agreement held that AGI was a far-off goal, recent developments have actually led some scientists and industry figures to claim that early kinds of AGI might currently exist. [78] AI leader Herbert A. Simon speculated in 1965 that "devices will be capable, within twenty years, timeoftheworld.date of doing any work a male can do". This forecast failed to come true. Microsoft co-founder Paul Allen thought that such intelligence is not likely in the 21st century since it would require "unforeseeable and basically unpredictable breakthroughs" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf between modern computing and human-level expert system is as large as the gulf in between present area flight and useful faster-than-light spaceflight. [80]
An additional obstacle is the absence of clearness in defining what intelligence entails. Does it need consciousness? Must it show the ability to set objectives as well as pursue them? Is it simply a matter of scale such that if design sizes increase adequately, intelligence will emerge? Are facilities such as planning, thinking, and causal understanding required? Does intelligence need explicitly replicating the brain and its particular professors? Does it require feelings? [81]
Most AI scientists believe strong AI can be attained in the future, however some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of accomplishing strong AI. [82] [83] John McCarthy is amongst those who think human-level AI will be accomplished, however that today level of progress is such that a date can not properly be forecasted. [84] AI specialists' views on the expediency of AGI wax and wane. Four surveys conducted in 2012 and 2013 recommended that the median quote among specialists for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% answered with "never" when asked the same question however with a 90% self-confidence instead. [85] [86] Further existing AGI development factors to consider can be found above Tests for confirming human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong predisposition towards anticipating the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 predictions made in between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers published a detailed evaluation of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, our company believe that it might reasonably be seen as an early (yet still insufficient) version of an artificial basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a considerable level of general intelligence has actually already been accomplished with frontier designs. They wrote that unwillingness to this view originates from 4 main factors: a "healthy suspicion about metrics for AGI", an "ideological dedication to alternative AI theories or strategies", a "commitment to human (or biological) exceptionalism", or a "concern about the economic implications of AGI". [91]
2023 likewise marked the introduction of big multimodal models (big language designs capable of processing or producing several methods such as text, audio, and images). [92]
In 2024, OpenAI launched o1-preview, the very first of a series of designs that "spend more time believing before they react". According to Mira Murati, this ability to think before reacting represents a new, extra paradigm. It enhances model outputs by spending more computing power when generating the answer, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had achieved AGI, mentioning, "In my opinion, we have actually currently achieved AGI and it's a lot more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any job", it is "much better than a lot of humans at a lot of tasks." He also addressed criticisms that large language designs (LLMs) simply follow predefined patterns, comparing their knowing procedure to the scientific technique of observing, hypothesizing, and confirming. These statements have sparked debate, as they rely on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs demonstrate exceptional flexibility, they may not completely fulfill this requirement. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales
Progress in synthetic intelligence has traditionally gone through periods of fast development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to produce space for additional development. [82] [98] [99] For example, the hardware readily available in the twentieth century was not enough to carry out deep knowing, which requires great deals of GPU-enabled CPUs. [100]
In the introduction to his 2006 book, [101] Goertzel states that quotes of the time needed before a truly versatile AGI is constructed differ from ten years to over a century. Since 2007 [upgrade], the consensus in the AGI research neighborhood seemed to be that the timeline discussed by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was possible. [103] Mainstream AI scientists have provided a vast array of viewpoints on whether development will be this quick. A 2012 meta-analysis of 95 such opinions found a bias towards predicting that the beginning of AGI would happen within 16-26 years for modern-day and historical predictions alike. That paper has been criticized for how it categorized viewpoints as expert or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton established a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, significantly much better than the second-best entry's rate of 26.3% (the traditional method utilized a weighted amount of ratings from various pre-defined classifiers). [105] AlexNet was considered the preliminary ground-breaker of the present deep knowing wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu performed intelligence tests on publicly offered and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds around to a six-year-old child in very first grade. An adult comes to about 100 on average. Similar tests were brought out in 2014, with the IQ rating reaching a maximum value of 27. [106] [107]
In 2020, OpenAI developed GPT-3, a language model capable of carrying out many varied tasks without specific training. According to Gary Grossman in a VentureBeat short article, while there is agreement that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be classified as a narrow AI system. [108]
In the same year, Jason Rohrer used his GPT-3 account to establish a chatbot, and offered a chatbot-developing platform called "Project December". OpenAI asked for modifications to the chatbot to abide by their safety guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]
In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various tasks. [110]
In 2023, Microsoft Research released a research study on an early version of OpenAI's GPT-4, competing that it showed more basic intelligence than previous AI models and demonstrated human-level efficiency in jobs spanning multiple domains, such as mathematics, coding, and law. This research study triggered an argument on whether GPT-4 might be thought about an early, incomplete version of synthetic general intelligence, stressing the requirement for more exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton mentioned that: [112]
The concept that this stuff might really get smarter than individuals - a few people believed that, [...] But most individuals believed it was way off. And I thought it was way off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer think that.
In May 2023, Demis Hassabis similarly stated that "The development in the last few years has been pretty amazing", which he sees no reason why it would decrease, anticipating AGI within a years or even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, stated his expectation that within 5 years, AI would can passing any test a minimum of as well as humans. [114] In June 2024, the AI scientist Leopold Aschenbrenner, a previous OpenAI staff member, approximated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most appealing course to AGI, [116] [117] whole brain emulation can work as an alternative technique. With whole brain simulation, a brain design is built by scanning and mapping a biological brain in detail, and after that copying and simulating it on a computer system or another computational device. The simulation design must be sufficiently loyal to the original, so that it acts in practically the very same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study purposes. It has actually been talked about in expert system research study [103] as an approach to strong AI. Neuroimaging innovations that might deliver the required detailed understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of adequate quality will end up being readily available on a similar timescale to the computing power required to replicate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computers or GPUs would be required, offered the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, supporting by the adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A quote of the brain's processing power, based on a simple switch model for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil took a look at numerous price quotes for the hardware needed to equate to the human brain and embraced a figure of 1016 computations per second (cps). [e] (For contrast, if a "calculation" was comparable to one "floating-point operation" - a step used to rate current supercomputers - then 1016 "calculations" would be equivalent to 10 petaFLOPS, achieved in 2011, while 1018 was attained in 2022.) He used this figure to predict the necessary hardware would be available at some point between 2015 and 2025, if the rapid development in computer power at the time of composing continued.
Current research study
The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.
Criticisms of simulation-based techniques
The synthetic neuron design assumed by Kurzweil and utilized in numerous current artificial neural network implementations is simple compared with biological neurons. A brain simulation would likely have to catch the in-depth cellular behaviour of biological nerve cells, currently understood just in broad overview. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (especially on a molecular scale) would require computational powers several orders of magnitude larger than Kurzweil's price quote. In addition, the quotes do not represent glial cells, which are known to contribute in cognitive procedures. [125]
A fundamental criticism of the simulated brain approach stems from embodied cognition theory which asserts that human personification is an essential element of human intelligence and is necessary to ground meaning. [126] [127] If this theory is proper, any fully functional brain model will require to include more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as a choice, but it is unidentified whether this would be enough.
Philosophical point of view
"Strong AI" as specified in approach
In 1980, philosopher John Searle created the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between 2 hypotheses about artificial intelligence: [f]
Strong AI hypothesis: An artificial intelligence system can have "a mind" and "awareness". Weak AI hypothesis: An expert system system can (only) imitate it believes and has a mind and consciousness.
The very first one he called "strong" because it makes a stronger statement: it presumes something special has actually taken place to the device that surpasses those abilities that we can evaluate. The behaviour of a "weak AI" maker would be exactly similar to a "strong AI" machine, however the latter would also have subjective mindful experience. This use is likewise common in academic AI research and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to mean "human level artificial general intelligence". [102] This is not the very same as Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic philosophers such as Searle do not believe that is the case, and to most expert system researchers the concern is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it genuine or a simulation." [130] If the program can behave as if it has a mind, then there is no requirement to understand if it actually has mind - certainly, there would be no other way to tell. For AI research, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic basic intelligence is possible". Thus, according to Russell and Norvig, "most AI researchers take the weak AI hypothesis for approved, and don't care about the strong AI hypothesis." [130] Thus, for academic AI research, "Strong AI" and "AGI" are two different things.
Consciousness
Consciousness can have various meanings, and some aspects play significant functions in science fiction and the principles of expert system:
Sentience (or "phenomenal consciousness"): The ability to "feel" perceptions or emotions subjectively, rather than the ability to reason about understandings. Some theorists, such as David Chalmers, utilize the term "consciousness" to refer solely to incredible consciousness, which is approximately equivalent to sentience. [132] Determining why and how subjective experience arises is referred to as the difficult problem of awareness. [133] Thomas Nagel described in 1974 that it "feels like" something to be mindful. If we are not mindful, then it does not seem like anything. Nagel utilizes the example of a bat: we can smartly ask "what does it seem like to be a bat?" However, we are not likely to ask "what does it feel like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has consciousness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had achieved life, though this claim was widely challenged by other experts. [135]
Self-awareness: To have mindful awareness of oneself as a different individual, especially to be knowingly knowledgeable about one's own thoughts. This is opposed to merely being the "subject of one's believed"-an operating system or debugger is able to be "mindful of itself" (that is, to represent itself in the very same method it represents everything else)-however this is not what individuals typically mean when they utilize the term "self-awareness". [g]
These qualities have a moral measurement. AI sentience would trigger issues of welfare and legal defense, likewise to animals. [136] Other aspects of consciousness associated to cognitive capabilities are likewise appropriate to the idea of AI rights. [137] Determining how to incorporate innovative AI with existing legal and social frameworks is an emergent concern. [138]
Benefits
AGI might have a large range of applications. If oriented towards such objectives, AGI might help mitigate various problems on the planet such as cravings, hardship and health problems. [139]
AGI could improve performance and performance in most tasks. For instance, in public health, AGI might speed up medical research study, significantly against cancer. [140] It might take care of the elderly, [141] and democratize access to quick, high-quality medical diagnostics. It could use enjoyable, low-cost and individualized education. [141] The need to work to subsist could become outdated if the wealth produced is properly rearranged. [141] [142] This likewise raises the concern of the location of humans in a drastically automated society.
AGI could likewise assist to make logical decisions, and to prepare for and avoid catastrophes. It could likewise assist to gain the benefits of possibly devastating innovations such as nanotechnology or climate engineering, while preventing the associated threats. [143] If an AGI's primary goal is to avoid existential catastrophes such as human termination (which might be tough if the Vulnerable World Hypothesis turns out to be true), [144] it might take measures to considerably lower the threats [143] while lessening the impact of these steps on our quality of life.
Risks
Existential dangers
AGI might represent numerous kinds of existential threat, which are risks that threaten "the premature termination of Earth-originating smart life or the long-term and extreme destruction of its potential for preferable future advancement". [145] The threat of human extinction from AGI has actually been the topic of many arguments, however there is also the possibility that the development of AGI would lead to a permanently flawed future. Notably, it could be utilized to spread and preserve the set of worths of whoever develops it. If humanity still has ethical blind spots similar to slavery in the past, AGI may irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI might facilitate mass security and brainwashing, which might be utilized to create a steady repressive around the world totalitarian regime. [147] [148] There is also a risk for the devices themselves. If makers that are sentient or otherwise deserving of moral consideration are mass developed in the future, participating in a civilizational path that indefinitely disregards their well-being and interests could be an existential disaster. [149] [150] Considering just how much AGI could improve humankind's future and help in reducing other existential threats, Toby Ord calls these existential dangers "an argument for continuing with due care", not for "deserting AI". [147]
Risk of loss of control and human extinction
The thesis that AI positions an existential threat for people, which this threat requires more attention, is controversial but has been endorsed in 2023 by many public figures, AI researchers and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed prevalent indifference:
So, dealing with possible futures of enormous benefits and risks, the specialists are definitely doing everything possible to make sure the very best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll arrive in a few decades,' would we simply reply, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is more or less what is occurring with AI. [153]
The possible fate of humanity has actually often been compared to the fate of gorillas threatened by human activities. The contrast mentions that higher intelligence allowed humanity to dominate gorillas, which are now susceptible in methods that they could not have expected. As a result, the gorilla has ended up being a threatened types, not out of malice, however simply as a civilian casualties from human activities. [154]
The skeptic Yann LeCun considers that AGIs will have no desire to dominate mankind and that we should be mindful not to anthropomorphize them and analyze their intents as we would for human beings. He stated that individuals won't be "clever sufficient to develop super-intelligent devices, yet ridiculously dumb to the point of giving it moronic objectives without any safeguards". [155] On the other side, the idea of crucial merging suggests that almost whatever their goals, intelligent agents will have factors to try to survive and obtain more power as intermediary actions to attaining these goals. Which this does not require having feelings. [156]
Many scholars who are worried about existential risk supporter for more research into resolving the "control problem" to answer the question: what types of safeguards, algorithms, or architectures can programmers execute to maximise the possibility that their recursively-improving AI would continue to act in a friendly, instead of devastating, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which could result in a race to the bottom of safety precautions in order to release items before competitors), [159] and making use of AI in weapon systems. [160]
The thesis that AI can present existential risk also has detractors. Skeptics typically say that AGI is not likely in the short-term, or that concerns about AGI distract from other concerns associated with present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals outside of the innovation market, existing chatbots and LLMs are currently viewed as though they were AGI, resulting in more misconception and worry. [162]
Skeptics sometimes charge that the thesis is crypto-religious, with an unreasonable belief in the possibility of superintelligence replacing an irrational belief in an omnipotent God. [163] Some scientists believe that the communication campaigns on AI existential risk by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) might be an at effort at regulatory capture and to inflate interest in their items. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, in addition to other market leaders and scientists, issued a joint statement asserting that "Mitigating the risk of termination from AI must be a global top priority together with other societal-scale dangers such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI estimated that "80% of the U.S. workforce might have at least 10% of their work jobs impacted by the introduction of LLMs, while around 19% of employees might see at least 50% of their tasks affected". [166] [167] They think about workplace employees to be the most exposed, for instance mathematicians, accountants or web designers. [167] AGI might have a better autonomy, capability to make choices, to interface with other computer tools, but also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the lifestyle will depend on how the wealth will be rearranged: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or the majority of people can end up miserably poor if the machine-owners successfully lobby against wealth redistribution. Up until now, the trend seems to be toward the 2nd choice, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal fundamental income. [168]
See likewise
Artificial brain - Software and hardware with cognitive capabilities similar to those of the animal or human brain AI result AI safety - Research location on making AI safe and advantageous AI alignment - AI conformance to the designated goal A.I. Rising - 2018 film directed by Lazar Bodroža Expert system Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research effort announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of artificial intelligence to play different video games Generative expert system - AI system efficient in producing material in response to triggers Human Brain Project - Scientific research study task Intelligence amplification - Use of info technology to enhance human intelligence (IA). Machine principles - Moral behaviours of man-made makers. Moravec's paradox. Multi-task knowing - Solving multiple machine learning jobs at the exact same time. Neural scaling law - Statistical law in artificial intelligence. Outline of expert system - Overview of and topical guide to expert system. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or kind of artificial intelligence. Transfer learning - Machine learning strategy. Loebner Prize - Annual AI competition. Hardware for artificial intelligence - Hardware specially designed and enhanced for expert system. Weak expert system - Form of synthetic intelligence.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic definition of "strong AI" and weak AI in the short article Chinese room. ^ AI founder John McCarthy composes: "we can not yet identify in basic what sort of computational procedures we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence used by synthetic intelligence scientists, see philosophy of expert system.). ^ The Lighthill report particularly slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being identified to money just "mission-oriented direct research study, rather than fundamental undirected research". [56] [57] ^ As AI founder John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the developers of new general formalisms would reveal their hopes in a more guarded kind than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI textbook: "The assertion that makers could potentially act intelligently (or, maybe much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that machines that do so are really thinking (instead of simulating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is developed to perform a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our objective is to ensure that artificial basic intelligence benefits all of humankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's new goal is producing artificial basic intelligence". The Verge. Retrieved 13 June 2024. Our vision is to construct AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were recognized as being active in 2020. ^ a b c "AI timelines: What do experts in artificial intelligence anticipate for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton quits Google and warns of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is hard to see how you can prevent the bad actors from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals triggers of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change modifications you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York City Times. The genuine hazard is not AI itself but the way we deploy it. ^ "Impressed by synthetic intelligence? Experts state AGI is following, and it has 'existential' threats". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI might pose existential risks to humanity. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last innovation that humankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the danger of extinction from AI must be an international concern. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals caution of risk of extinction from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from producing makers that can outthink us in basic methods. ^ LeCun, Yann (June 2023). "AGI does not present an existential risk". Medium. There is no reason to fear AI as an existential danger. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the initial on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the complete variety of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they utilize for "human-level" intelligence in the physical symbol system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the original on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart qualities is based on the topics covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the way we believe: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reassessed: The idea of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reconsidered: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a real boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists dispute whether computer system 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing everything from the bar exam to AP Biology. Here's a list of hard examinations both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Expert System Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder suggested checking an AI chatbot's ability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Expert System (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 quoted in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers avoided the term expert system for fear of being viewed as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Artificial Intelligence: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who created the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., via Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summertime school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the original on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite development in machine intelligence, synthetic general intelligence is still a significant challenge". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not become a Frankenstein's beast". The Guardian. Archived from the initial on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why basic expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will synthetic intelligence bring us utopia or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future progress in synthetic intelligence: A study of professional opinion. In Fundamental problems of synthetic intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of devices: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial basic intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational function of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as wise as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're entering the AI twilight zone between narrow and general AI". VentureBeat. Archived from the initial on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who declare we are currently seeing an early example of an AGI system in the recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is debatable, however the consensus is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground in between narrow and basic AI. ^ Quach, Katyanna. "A designer built an AI chatbot using GPT-3 that assisted a male speak once again to his late fiancée. OpenAI shut it down". The Register. Archived from the original on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can perform over 600 jobs, from playing video games to managing robots", TechCrunch, archived from the original on 16 June 2022, retrieved 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early try outs GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might match human intelligence in 'just a few years,' states CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI could pass human tests in 5 years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to define Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research task maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the original on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A vast array of views in existing research study, all of which need grounding to some degree ^ Thornton, Angela (26 June 2023). "How uploading our minds to a computer system might end up being possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For instance: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (quoted in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (priced quote in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable synthetic intelligence for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Expert System Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the expense outweigh benefits?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Take advantage of Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Appear Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, risks, techniques (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological progress is making it likelier than ever that people will ruin ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate change an 'existential security risk' to Australia, Senate query states". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence looks at the ramifications of expert system - but are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook argument in between Yann LeCun, Stuart Russel and Yoshua Bengio about the dangers of strong AI". The fascinating Facebook debate in between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Artificial Intelligence Doom The Human Race Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI danger: a study". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race dangers spiralling out of control, report cautions". Financial Times. Archived from the original on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over hazard posed but artificial intelligence can not be neglected". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would completion of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stiring fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain creator states big tech is lying about AI termination threat". Australian Financial Review. Archived from the initial on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of large language designs". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI says 80% of employees might see their tasks impacted by AI. These are the jobs most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk says we need universal standard earnings because 'in the future, manual labor will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Search for Artificial Intelligence. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Expert System and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the original (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level synthetic general intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the original on 7 January 2016, recovered 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, obtained 7 May 2011. Howe, J. (November 1994), Expert System at Edinburgh University: a Point of view, archived from the original on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Artificial Intelligence: A General Survey", Artificial Intelligence: a paper seminar, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (fifth ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Artificial Intelligence?. Stanford University. The supreme effort is to make computer system programs that can solve problems and achieve goals worldwide in addition to human beings. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the original on 15 June 2006, retrieved 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Science as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Expert System: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Artificial Intelligence", Funding a Revolution: Government Support for Computing Research, National Academy Press, archived from the initial on 12 January 2008, retrieved 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Sensible Approach, New York City: Oxford University Press, archived from the initial on 25 July 2009, recovered 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (2nd ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the initial on 25 March 2020, obtained 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, recovered 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York City: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - by means of ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, obtained 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Artificial Intelligence Will Kill Our Grandchildren (Singularity), archived from the initial on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, writes (in what may be called "Dyson's Law") that "Any system simple adequate to be easy to understand will not be complicated enough to act smartly, while any system made complex enough to act intelligently will be too complicated to understand." (p. 197.) Computer scientist Alex Pentland composes: "Current AI machine-learning algorithms are, at their core, dead easy silly. They work, however they work by strength." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (review of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what identifies us from machines. For biological animals, factor and function originate from acting in the world and experiencing the consequences. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no celebration for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the original (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (review of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't realistically expect that those who wish to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't count on federal governments driven by campaign financing contributions [from tech business] to push back.' ... Marcus information the demands that residents ought to make of their federal governments and the tech companies. They consist of transparency on how AI systems work; settlement for individuals if their data [are] used to train LLMs (large language model) s and the right to grant this use; and the capability to hold tech business responsible for the harms they trigger by eliminating Section 230, imposing cash penalites, and passing more stringent product liability laws ... Marcus also recommends ... that a brand-new, AI-specific federal company, comparable to the FDA, the FCC, or the FTC, may supply the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... suggests ... establish [ing] a professional licensing program for engineers that would operate in a comparable way to medical licenses, malpractice matches, and the Hippocratic oath in medicine. 'What if, like doctors,' she asks ..., 'AI engineers also pledged to do no damage?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has actually baffled people for years, exposes the restrictions of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competition has actually revealed that although NLP (natural-language processing) models can unbelievable accomplishments, their capabilities are really much restricted by the amount of context they get. This [...] could cause [troubles] for akropolistravel.com scientists who want to use them to do things such as evaluate ancient languages. Sometimes, there are couple of historical records on long-gone civilizations to act as training data for such a purpose." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now use A.I. to create phony videos identical from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we suggest sensible videos produced using expert system that in fact trick people, then they barely exist. The phonies aren't deep, and the deeps aren't phony. [...] A.I.-generated videos are not, in general, running in our media as counterfeited evidence. Their role better looks like that of animations, specifically smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We must prevent humanizing machine-learning models utilized in clinical research", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: Is talking with a machine a conversation?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the latest, buzziest systems of artificial basic intelligence are stymmied by the usual problems", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Artificial Intelligence, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the initial on 3 March 2016, obtained 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Expert system, provided and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition innovation lead authorities to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be measured by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT fails at tasks that need real humanlike reasoning or an understanding of the physical and social world ... ChatGPT appeared not able to factor realistically and tried to count on its huge database of ... truths derived from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI innovations are effective however unreliable. Rules-based systems can not handle circumstances their developers did not expect. Learning systems are restricted by the data on which they were trained. AI failures have already resulted in catastrophe. Advanced auto-pilot features in automobiles, although they carry out well in some situations, have driven automobiles without alerting into trucks, concrete barriers, and parked automobiles. In the wrong circumstance, AI systems go from supersmart to superdumb in an instant. When an enemy is attempting to control and hack an AI system, the dangers are even greater." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are made possible by new technologies but depend on the timelelss human propensity to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.