Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
A
agalliances
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 1
    • Issues 1
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Freya Heckel
  • agalliances
  • Issues
  • #1

Closed
Open
Opened Apr 09, 2025 by Freya Heckel@freya366797127Maintainer
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to facilitate the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research, making released research study more easily reproducible [24] [144] while offering users with a simple interface for engaging with these environments. In 2022, new advancements of Gym have actually been relocated to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for systemcheck-wiki.de reinforcement knowing (RL) research on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research study focused mainly on optimizing representatives to resolve single tasks. Gym Retro offers the capability to generalize between video games with comparable concepts however various appearances.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot representatives initially do not have understanding of how to even walk, but are offered the objectives of discovering to move and to press the opposing representative out of the ring. [148] Through this adversarial learning process, the representatives find out how to adapt to changing conditions. When a representative is then removed from this virtual environment and put in a new virtual environment with high winds, the representative braces to remain upright, suggesting it had actually learned how to balance in a generalized method. [148] [149] OpenAI's Igor Mordatch argued that competition between representatives might develop an intelligence "arms race" that could increase an agent's ability to work even outside the context of the competition. [148]
OpenAI 5

OpenAI Five is a team of five OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that find out to play against human players at a high ability level entirely through experimental algorithms. Before becoming a team of 5, the very first public demonstration happened at The International 2017, the annual premiere championship competition for the video game, where Dendi, a professional Ukrainian gamer, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for two weeks of real time, and that the knowing software application was an action in the direction of developing software application that can handle intricate tasks like a cosmetic surgeon. [152] [153] The system uses a form of support knowing, as the bots learn over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an enemy and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots broadened to play together as a full group of 5, and they were able to defeat groups of amateur and semi-professional players. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibit matches against professional players, however wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the reigning world champions of the video game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public appearance came later on that month, where they played in 42,729 overall video games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot player reveals the obstacles of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has demonstrated making use of deep reinforcement knowing (DRL) representatives to attain superhuman competence in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl uses device learning to train a Shadow Hand, a human-like robotic hand, to control physical items. [167] It finds out completely in simulation using the very same RL algorithms and training code as OpenAI Five. OpenAI took on the item orientation issue by utilizing domain randomization, a simulation method which the student to a range of experiences rather than trying to fit to truth. The set-up for Dactyl, aside from having movement tracking cameras, also has RGB cams to allow the robot to control an approximate object by seeing it. In 2018, OpenAI revealed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might fix a Rubik's Cube. The robot was able to solve the puzzle 60% of the time. Objects like the Rubik's Cube introduce complex physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of generating gradually harder environments. ADR varies from manual domain randomization by not requiring a human to specify randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI models established by OpenAI" to let designers contact it for "any English language AI job". [170] [171]
Text generation

The business has promoted generative pretrained transformers (GPT). [172]
OpenAI's original GPT model ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was composed by Alec Radford and his associates, and published in preprint on OpenAI's website on June 11, 2018. [173] It showed how a generative model of language could obtain world knowledge and procedure long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is a not being watched transformer language model and the successor to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with just minimal demonstrative versions at first launched to the public. The complete variation of GPT-2 was not right away released due to concern about possible abuse, consisting of applications for writing fake news. [174] Some specialists expressed uncertainty that GPT-2 posed a significant hazard.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to detect "neural phony news". [175] Other researchers, such as Jeremy Howard, cautioned of "the technology to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would hush all other speech and be difficult to filter". [176] In November 2019, OpenAI released the total version of the GPT-2 language design. [177] Several websites host interactive demonstrations of different circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue without supervision language designs to be general-purpose students, shown by GPT-2 attaining cutting edge precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not further trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains slightly 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It prevents certain concerns encoding vocabulary with word tokens by utilizing byte pair encoding. This allows representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is a without supervision transformer language design and the follower to GPT-2. [182] [183] [184] OpenAI mentioned that the full version of GPT-3 contained 175 billion parameters, [184] two orders of magnitude larger than the 1.5 billion [185] in the complete version of GPT-2 (although GPT-3 designs with as few as 125 million criteria were likewise trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" jobs and could generalize the function of a single input-output pair. The GPT-3 release paper provided examples of translation and cross-linguistic transfer learning in between English and Romanian, and in between English and German. [184]
GPT-3 drastically improved benchmark results over GPT-2. OpenAI warned that such scaling-up of language models might be approaching or experiencing the basic ability constraints of predictive language models. [187] Pre-training GPT-3 needed a number of thousand petaflop/s-days [b] of calculate, compared to 10s of petaflop/s-days for the complete GPT-2 design. [184] Like its predecessor, [174] the GPT-3 trained design was not right away launched to the general public for issues of possible abuse, although OpenAI prepared to allow gain access to through a paid cloud API after a two-month totally free private beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in private beta. [194] According to OpenAI, the design can create working code in over a dozen shows languages, many efficiently in Python. [192]
Several problems with glitches, style defects and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has been accused of emitting copyrighted code, without any author attribution or license. [197]
OpenAI announced that they would terminate support for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI revealed the release of Generative Pre-trained Transformer 4 (GPT-4), capable of accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar exam with a rating around the leading 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 might likewise check out, analyze or generate up to 25,000 words of text, and write code in all significant programs languages. [200]
Observers reported that the version of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based iteration, with the caution that GPT-4 retained some of the problems with earlier modifications. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has declined to reveal different technical details and statistics about GPT-4, such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI revealed and released GPT-4o, which can process and produce text, images and audio. [204] GPT-4o attained state-of-the-art lead to voice, multilingual, and vision criteria, setting brand-new records in audio speech acknowledgment and wiki.dulovic.tech translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) standard compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be particularly helpful for enterprises, start-ups and designers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI launched the o1-preview and disgaeawiki.info o1-mini designs, which have been designed to take more time to consider their reactions, leading to higher accuracy. These designs are especially reliable in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 thinking model. OpenAI also unveiled o3-mini, a lighter and quicker version of OpenAI o3. Since December 21, 2024, this model is not available for public use. According to OpenAI, they are testing o3 and o3-mini. [212] [213] Until January 10, 2025, security and security scientists had the chance to obtain early access to these designs. [214] The design is called o3 rather than o2 to prevent confusion with telecommunications services company O2. [215]
Deep research study

Deep research is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 model to carry out extensive web surfing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to 30 minutes. [216] With searching and Python tools allowed, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to examine the semantic similarity in between text and images. It can especially be utilized for image classification. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer model that develops images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter version of GPT-3 to analyze natural language inputs (such as "a green leather bag shaped like a pentagon" or "an isometric view of a sad capybara") and produce matching images. It can produce images of realistic things ("a stained-glass window with a picture of a blue strawberry") in addition to items that do not exist in reality ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded variation of the design with more reasonable outcomes. [219] In December 2022, OpenAI released on GitHub software for Point-E, a brand-new simple system for transforming a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful model better able to create images from intricate descriptions without manual prompt engineering and render complex details like hands and text. [221] It was released to the public as a ChatGPT Plus function in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can create videos based upon short detailed triggers [223] in addition to extend existing videos forwards or backwards in time. [224] It can generate videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of produced videos is unidentified.

Sora's advancement group called it after the Japanese word for "sky", to signify its "endless imaginative capacity". [223] Sora's technology is an adaptation of the innovation behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos accredited for that purpose, but did not reveal the number or the precise sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the public on February 15, 2024, mentioning that it might produce videos as much as one minute long. It also shared a technical report highlighting the methods utilized to train the model, and the model's capabilities. [225] It acknowledged a few of its shortcomings, consisting of battles replicating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "excellent", but noted that they should have been cherry-picked and might not represent Sora's normal output. [225]
Despite uncertainty from some academic leaders following Sora's public demonstration, significant entertainment-industry figures have shown significant interest in the technology's capacity. In an interview, actor/filmmaker Tyler Perry revealed his astonishment at the technology's ability to create realistic video from text descriptions, citing its prospective to reinvent storytelling and content production. He said that his enjoyment about Sora's possibilities was so strong that he had actually chosen to pause plans for expanding his Atlanta-based film studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech acknowledgment model. [228] It is trained on a large dataset of diverse audio and is likewise a multi-task model that can perform multilingual speech acknowledgment in addition to speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to anticipate subsequent musical notes in MIDI music files. It can generate songs with 10 instruments in 15 designs. According to The Verge, a tune produced by MuseNet tends to start fairly but then fall under turmoil the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were utilized as early as 2020 for the internet mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a bit of lyrics and outputs song samples. OpenAI specified the tunes "reveal regional musical coherence [and] follow conventional chord patterns" however acknowledged that the songs lack "familiar larger musical structures such as choruses that duplicate" and that "there is a significant space" between Jukebox and human-generated music. The Verge mentioned "It's highly excellent, even if the results seem like mushy versions of tunes that might feel familiar", while Business Insider stated "remarkably, some of the resulting tunes are appealing and sound legitimate". [234] [235] [236]
Interface

Debate Game

In 2018, OpenAI released the Debate Game, which teaches machines to debate toy problems in front of a human judge. The function is to research study whether such an approach might assist in auditing AI decisions and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and wiki.lafabriquedelalogistique.fr neuron of 8 neural network designs which are often studied in interpretability. [240] Microscope was produced to evaluate the functions that form inside these neural networks easily. The designs consisted of are AlexNet, VGG-19, various variations of Inception, and various variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool built on top of GPT-3 that supplies a conversational interface that permits users to ask concerns in natural language. The system then responds with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: freya366797127/agalliances#1