Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
M
myad
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 12
    • Issues 12
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Alicia Fehon
  • myad
  • Issues
  • #5

Closed
Open
Opened May 27, 2025 by Alicia Fehon@aliciafehon058Maintainer
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are delighted to announce that DeepSeek R1 distilled Llama and Qwen designs are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations ranging from 1.5 to 70 billion criteria to develop, experiment, and properly scale your generative AI ideas on AWS.

In this post, we show how to get begun with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow comparable steps to release the distilled variations of the models too.

Overview of DeepSeek-R1

DeepSeek-R1 is a big language design (LLM) developed by DeepSeek AI that uses reinforcement finding out to improve thinking capabilities through a multi-stage training process from a DeepSeek-V3-Base foundation. A crucial differentiating feature is its support knowing (RL) action, which was utilized to improve the model's actions beyond the standard pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adapt better to user feedback and goals, eventually improving both relevance and clearness. In addition, wiki.snooze-hotelsoftware.de DeepSeek-R1 employs a chain-of-thought (CoT) technique, implying it's equipped to break down intricate questions and factor through them in a detailed way. This assisted thinking process permits the design to produce more precise, transparent, and detailed answers. This model integrates RL-based fine-tuning with CoT capabilities, aiming to generate structured reactions while concentrating on interpretability and user interaction. With its comprehensive capabilities DeepSeek-R1 has recorded the industry's attention as a flexible text-generation model that can be integrated into various workflows such as agents, logical reasoning and information analysis tasks.

DeepSeek-R1 utilizes a Mix of Experts (MoE) architecture and is 671 billion criteria in size. The MoE architecture allows activation of 37 billion criteria, enabling effective reasoning by routing queries to the most appropriate professional "clusters." This approach enables the model to concentrate on various problem domains while maintaining general efficiency. DeepSeek-R1 needs at least 800 GB of HBM memory in FP8 format for reasoning. In this post, surgiteams.com we will utilize an ml.p5e.48 xlarge circumstances to release the model. ml.p5e.48 xlarge features 8 Nvidia H200 GPUs supplying 1128 GB of GPU memory.

DeepSeek-R1 distilled designs bring the reasoning capabilities of the main R1 model to more efficient architectures based on popular open designs like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation refers to a process of training smaller, more effective models to simulate the habits and reasoning patterns of the larger DeepSeek-R1 model, using it as a teacher design.

You can release DeepSeek-R1 model either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging model, we advise deploying this model with guardrails in location. In this blog site, we will use Amazon Bedrock Guardrails to introduce safeguards, avoid damaging material, and assess models against essential security criteria. At the time of composing this blog site, for DeepSeek-R1 deployments on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports only the ApplyGuardrail API. You can produce multiple guardrails tailored to various usage cases and apply them to the DeepSeek-R1 design, enhancing user experiences and standardizing safety controls throughout your generative AI applications.

Prerequisites

To release the DeepSeek-R1 design, you require access to an ml.p5e instance. To check if you have quotas for P5e, open the Service Quotas console and under AWS Services, pick Amazon SageMaker, and verify you're using ml.p5e.48 xlarge for endpoint use. Make certain that you have at least one ml.P5e.48 xlarge circumstances in the AWS Region you are releasing. To request a limitation boost, develop a limitation boost demand and connect to your account team.

Because you will be deploying this design with Amazon Bedrock Guardrails, make certain you have the correct AWS Identity and Gain Access To Management (IAM) consents to utilize Amazon Bedrock Guardrails. For guidelines, see Establish authorizations to use guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails allows you to present safeguards, prevent damaging content, and hb9lc.org examine designs against key security criteria. You can carry out safety measures for the DeepSeek-R1 design utilizing the Amazon Bedrock ApplyGuardrail API. This allows you to use guardrails to evaluate user inputs and model reactions deployed on Amazon Bedrock Marketplace and SageMaker JumpStart. You can develop a guardrail utilizing the Amazon Bedrock console or trademarketclassifieds.com the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation includes the following actions: First, the system gets an input for the design. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent to the design for inference. After receiving the design's output, another guardrail check is used. If the output passes this final check, it's returned as the outcome. However, if either the input or output is intervened by the guardrail, a message is returned indicating the nature of the intervention and whether it occurred at the input or output stage. The examples showcased in the following sections demonstrate reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace gives you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, total the following steps:

1. On the Amazon Bedrock console, pick Model brochure under Foundation models in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to invoke the design. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a supplier and pick the DeepSeek-R1 model.

The design detail page offers essential details about the model's abilities, pricing structure, and application standards. You can discover detailed usage guidelines, including sample API calls and code bits for integration. The model supports various text generation jobs, consisting of content development, code generation, and question answering, utilizing its support discovering optimization and CoT reasoning capabilities. The page also includes implementation choices and licensing details to help you begin with DeepSeek-R1 in your applications. 3. To start using DeepSeek-R1, pick Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The model ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (between 1-50 alphanumeric characters). 5. For Number of circumstances, get in a variety of instances (between 1-100). 6. For Instance type, choose your instance type. For optimum performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is recommended. Optionally, you can set up innovative security and infrastructure settings, including virtual private cloud (VPC) networking, service role permissions, and encryption settings. For many utilize cases, the default settings will work well. However, for production deployments, you may wish to review these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin utilizing the model.

When the release is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock play area. 8. Choose Open in play area to access an interactive user interface where you can try out different prompts and change model criteria like temperature and maximum length. When using R1 with Bedrock's InvokeModel and Playground Console, utilize DeepSeek's chat design template for ideal results. For instance, content for reasoning.

This is an exceptional way to check out the model's thinking and text generation capabilities before incorporating it into your applications. The play ground offers immediate feedback, assisting you understand how the design reacts to various inputs and letting you fine-tune your prompts for optimal outcomes.

You can rapidly check the design in the play area through the UI. However, to conjure up the released model programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning using guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to perform inference utilizing a released DeepSeek-R1 design through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo. After you have created the guardrail, use the following code to execute guardrails. The script initializes the bedrock_runtime customer, sets up inference parameters, and sends out a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) center with FMs, built-in algorithms, and prebuilt ML options that you can release with simply a few clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production utilizing either the UI or SDK.

Deploying DeepSeek-R1 model through SageMaker JumpStart provides 2 convenient approaches: using the instinctive SageMaker JumpStart UI or carrying out programmatically through the SageMaker Python SDK. Let's explore both approaches to help you pick the approach that finest suits your requirements.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, choose Studio in the navigation pane. 2. First-time users will be triggered to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The model internet browser displays available designs, with details like the service provider name and model capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each model card reveals crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for instance, Text Generation). Bedrock Ready badge (if appropriate), showing that this model can be signed up with Amazon Bedrock, enabling you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to view the design details page.

    The model details page consists of the following details:

    - The model name and supplier details. Deploy button to release the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specs.
  • Usage standards

    Before you release the model, it's recommended to evaluate the design details and license terms to validate compatibility with your use case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the immediately generated name or produce a custom one.
  1. For example type ¸ choose an instance type (default: ml.p5e.48 xlarge).
  2. For Initial circumstances count, go into the variety of instances (default: 1). Selecting appropriate instance types and counts is important for expense and performance optimization. Monitor your implementation to adjust these settings as needed.Under Inference type, Real-time inference is picked by default. This is optimized for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we highly recommend sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in location.
  4. Choose Deploy to deploy the model.

    The deployment procedure can take a number of minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this moment, the model is ready to accept inference requests through the endpoint. You can keep an eye on the implementation development on the SageMaker console Endpoints page, which will display pertinent metrics and status details. When the implementation is total, you can conjure up the design utilizing a SageMaker runtime customer and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To get begun with DeepSeek-R1 using the SageMaker Python SDK, you will need to set up the SageMaker Python SDK and make certain you have the necessary AWS consents and environment setup. The following is a detailed code example that demonstrates how to release and utilize DeepSeek-R1 for reasoning programmatically. The code for releasing the model is offered in the Github here. You can clone the note pad and wiki.dulovic.tech run from SageMaker Studio.

    You can run additional requests against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can produce a guardrail using the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Clean up

    To avoid undesirable charges, complete the steps in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model using Amazon Bedrock Marketplace, complete the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, select Marketplace releases.
  5. In the Managed releases section, wiki.snooze-hotelsoftware.de find the endpoint you wish to delete.
  6. Select the endpoint, and on the Actions menu, choose Delete.
  7. Verify the endpoint details to make certain you're deleting the right implementation: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you want to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to get begun. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained designs, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting started with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He generative AI business build innovative services using AWS services and sped up compute. Currently, he is focused on establishing methods for fine-tuning and optimizing the inference efficiency of big language models. In his downtime, Vivek takes pleasure in treking, enjoying films, and attempting different foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer technology and Bioinformatics.

    Jonathan Evans is a Specialist Solutions Architect working on generative AI with the Third-Party Model Science team at AWS.

    Banu Nagasundaram leads item, engineering, and strategic partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is passionate about building services that assist clients accelerate their AI journey and unlock service value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: aliciafehon058/myad#5