Skip to content

GitLab

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
  • Help
    • Help
    • Support
    • Community forum
    • Submit feedback
    • Contribute to GitLab
  • Sign in / Register
I
intunz
  • Project overview
    • Project overview
    • Details
    • Activity
  • Issues 52
    • Issues 52
    • List
    • Boards
    • Labels
    • Service Desk
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Operations
    • Operations
    • Environments
  • Packages & Registries
    • Packages & Registries
    • Package Registry
  • Analytics
    • Analytics
    • CI / CD
    • Value Stream
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Albertina Skalski
  • intunz
  • Issues
  • #40

Closed
Open
Opened Apr 08, 2025 by Albertina Skalski@albertinaskalsMaintainer
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek-R1 Model now Available in Amazon Bedrock Marketplace And Amazon SageMaker JumpStart


Today, we are thrilled to announce that DeepSeek R1 distilled Llama and Qwen models are available through Amazon Bedrock Marketplace and Amazon SageMaker JumpStart. With this launch, you can now release DeepSeek AI's first-generation frontier model, DeepSeek-R1, along with the distilled variations varying from 1.5 to 70 billion criteria to construct, experiment, and properly scale your generative AI ideas on AWS.

In this post, we demonstrate how to get started with DeepSeek-R1 on Amazon Bedrock Marketplace and SageMaker JumpStart. You can follow similar actions to release the distilled variations of the models also.

Overview of DeepSeek-R1

DeepSeek-R1 is a large language design (LLM) developed by DeepSeek AI that utilizes reinforcement finding out to boost thinking capabilities through a multi-stage training procedure from a DeepSeek-V3-Base structure. An essential distinguishing function is its support learning (RL) step, which was used to refine the design's reactions beyond the basic pre-training and fine-tuning procedure. By integrating RL, DeepSeek-R1 can adjust more effectively to user feedback and goals, eventually enhancing both importance and clearness. In addition, DeepSeek-R1 employs a chain-of-thought (CoT) approach, implying it's equipped to break down intricate inquiries and reason through them in a detailed manner. This guided reasoning process allows the model to produce more precise, transparent, and detailed answers. This model combines RL-based fine-tuning with CoT capabilities, aiming to create structured actions while concentrating on interpretability and user interaction. With its comprehensive abilities DeepSeek-R1 has caught the industry's attention as a flexible text-generation design that can be incorporated into different workflows such as agents, rational thinking and data interpretation jobs.

DeepSeek-R1 utilizes a Mixture of Experts (MoE) architecture and is 671 billion parameters in size. The MoE architecture allows activation of 37 billion specifications, making it possible for effective inference by routing queries to the most appropriate specialist "clusters." This technique allows the design to focus on various problem domains while maintaining general effectiveness. DeepSeek-R1 requires at least 800 GB of HBM memory in FP8 format for inference. In this post, we will utilize an ml.p5e.48 xlarge circumstances to deploy the design. ml.p5e.48 xlarge includes 8 Nvidia H200 1128 GB of GPU memory.

DeepSeek-R1 distilled models bring the thinking capabilities of the main R1 design to more efficient architectures based upon popular open models like Qwen (1.5 B, 7B, 14B, and 32B) and Llama (8B and 70B). Distillation describes a procedure of training smaller sized, more effective designs to imitate the behavior and reasoning patterns of the larger DeepSeek-R1 model, using it as an instructor design.

You can release DeepSeek-R1 design either through SageMaker JumpStart or Bedrock Marketplace. Because DeepSeek-R1 is an emerging design, we suggest deploying this design with guardrails in place. In this blog site, we will utilize Amazon Bedrock Guardrails to present safeguards, avoid damaging content, and examine models against crucial security requirements. At the time of composing this blog, for DeepSeek-R1 implementations on SageMaker JumpStart and Bedrock Marketplace, Bedrock Guardrails supports just the ApplyGuardrail API. You can produce multiple guardrails tailored to different usage cases and apply them to the DeepSeek-R1 model, improving user experiences and standardizing security controls across your generative AI applications.

Prerequisites

To deploy the DeepSeek-R1 model, you need access to an ml.p5e instance. To inspect if you have quotas for P5e, open the Service Quotas console and under AWS Services, choose Amazon SageMaker, and validate you're using ml.p5e.48 xlarge for endpoint usage. Make certain that you have at least one ml.P5e.48 xlarge instance in the AWS Region you are deploying. To request a limitation boost, create a limitation boost request and reach out to your account team.

Because you will be releasing this design with Amazon Bedrock Guardrails, make certain you have the right AWS Identity and Gain Access To Management (IAM) approvals to utilize Amazon Bedrock Guardrails. For instructions, see Establish consents to utilize guardrails for content filtering.

Implementing guardrails with the ApplyGuardrail API

Amazon Bedrock Guardrails enables you to introduce safeguards, prevent harmful content, and evaluate models against essential safety criteria. You can implement precaution for the DeepSeek-R1 design using the Amazon Bedrock ApplyGuardrail API. This permits you to apply guardrails to assess user inputs and design reactions released on Amazon Bedrock Marketplace and SageMaker JumpStart. You can create a guardrail using the Amazon Bedrock console or the API. For the example code to produce the guardrail, see the GitHub repo.

The basic circulation involves the following actions: First, the system gets an input for the model. This input is then processed through the ApplyGuardrail API. If the input passes the guardrail check, it's sent out to the model for inference. After getting the model's output, another guardrail check is used. If the output passes this last check, it's returned as the last outcome. However, if either the input or output is intervened by the guardrail, a message is returned suggesting the nature of the intervention and whether it took place at the input or output stage. The examples showcased in the following areas show reasoning using this API.

Deploy DeepSeek-R1 in Amazon Bedrock Marketplace

Amazon Bedrock Marketplace provides you access to over 100 popular, emerging, and specialized foundation designs (FMs) through Amazon Bedrock. To gain access to DeepSeek-R1 in Amazon Bedrock, complete the following steps:

1. On the Amazon Bedrock console, choose Model brochure under Foundation designs in the navigation pane. At the time of composing this post, you can utilize the InvokeModel API to conjure up the model. It does not support Converse APIs and other Amazon Bedrock tooling. 2. Filter for DeepSeek as a company and select the DeepSeek-R1 model.

The model detail page provides essential details about the model's abilities, prices structure, and application standards. You can discover detailed use instructions, consisting of sample API calls and code bits for combination. The design supports various text generation tasks, including material creation, code generation, and concern answering, utilizing its reinforcement learning optimization and CoT reasoning capabilities. The page likewise consists of implementation alternatives and licensing details to help you get begun with DeepSeek-R1 in your applications. 3. To begin utilizing DeepSeek-R1, choose Deploy.

You will be triggered to set up the release details for DeepSeek-R1. The design ID will be pre-populated. 4. For Endpoint name, go into an endpoint name (in between 1-50 alphanumeric characters). 5. For Variety of circumstances, enter a variety of instances (in between 1-100). 6. For example type, pick your instance type. For ideal performance with DeepSeek-R1, a GPU-based circumstances type like ml.p5e.48 xlarge is advised. Optionally, you can configure innovative security and facilities settings, consisting of virtual private cloud (VPC) networking, service function permissions, and file encryption settings. For a lot of utilize cases, the default settings will work well. However, for production implementations, you might wish to evaluate these settings to line up with your company's security and compliance requirements. 7. Choose Deploy to begin using the model.

When the implementation is complete, you can check DeepSeek-R1's abilities straight in the Amazon Bedrock playground. 8. Choose Open in play ground to access an interactive interface where you can try out different prompts and change design parameters like temperature and optimum length. When utilizing R1 with Bedrock's InvokeModel and Playground Console, use DeepSeek's chat template for ideal outcomes. For instance, content for inference.

This is an outstanding way to check out the model's thinking and text generation capabilities before integrating it into your applications. The playground provides immediate feedback, assisting you understand how the design responds to various inputs and letting you tweak your triggers for optimal results.

You can quickly check the model in the playground through the UI. However, to invoke the deployed design programmatically with any Amazon Bedrock APIs, you need to get the endpoint ARN.

Run reasoning utilizing guardrails with the released DeepSeek-R1 endpoint

The following code example demonstrates how to carry out reasoning utilizing a deployed DeepSeek-R1 model through Amazon Bedrock utilizing the invoke_model and ApplyGuardrail API. You can produce a guardrail using the Amazon Bedrock console or the API. For the example code to create the guardrail, see the GitHub repo. After you have actually created the guardrail, use the following code to carry out guardrails. The script initializes the bedrock_runtime customer, sets up reasoning specifications, and sends out a demand to produce text based on a user prompt.

Deploy DeepSeek-R1 with SageMaker JumpStart

SageMaker JumpStart is an artificial intelligence (ML) hub with FMs, integrated algorithms, and prebuilt ML solutions that you can deploy with just a couple of clicks. With SageMaker JumpStart, you can tailor pre-trained models to your use case, with your information, and release them into production using either the UI or SDK.

Deploying DeepSeek-R1 design through SageMaker JumpStart uses 2 convenient approaches: using the user-friendly SageMaker JumpStart UI or implementing programmatically through the SageMaker Python SDK. Let's check out both techniques to assist you select the technique that best fits your needs.

Deploy DeepSeek-R1 through SageMaker JumpStart UI

Complete the following actions to deploy DeepSeek-R1 using SageMaker JumpStart:

1. On the SageMaker console, pick Studio in the navigation pane. 2. First-time users will be prompted to produce a domain. 3. On the SageMaker Studio console, select JumpStart in the navigation pane.

The design web browser displays available models, with details like the company name and model capabilities.

4. Search for DeepSeek-R1 to view the DeepSeek-R1 model card. Each design card shows crucial details, consisting of:

- Model name

  • Provider name
  • Task category (for example, Text Generation). Bedrock Ready badge (if appropriate), showing that this design can be signed up with Amazon Bedrock, allowing you to use Amazon Bedrock APIs to conjure up the model

    5. Choose the model card to see the design details page.

    The model details page includes the following details:

    - The design name and provider details. Deploy button to deploy the design. About and Notebooks tabs with detailed details

    The About tab includes crucial details, such as:

    - Model description.
  • License details.
  • Technical specifications.
  • Usage guidelines

    Before you deploy the model, it's suggested to evaluate the design details and license terms to validate compatibility with your usage case.

    6. Choose Deploy to proceed with deployment.

    7. For Endpoint name, utilize the instantly generated name or produce a customized one.
  1. For Instance type ¸ select an instance type (default: ml.p5e.48 xlarge).
  2. For Initial instance count, get in the number of circumstances (default: 1). Selecting suitable circumstances types and counts is essential for cost and efficiency optimization. Monitor your implementation to change these settings as needed.Under Inference type, Real-time inference is picked by default. This is enhanced for sustained traffic and low latency.
  3. Review all configurations for accuracy. For this design, we strongly suggest sticking to SageMaker JumpStart default settings and making certain that network seclusion remains in place.
  4. Choose Deploy to deploy the design.

    The deployment procedure can take several minutes to complete.

    When deployment is total, your endpoint status will change to InService. At this point, the design is ready to accept inference demands through the endpoint. You can monitor the deployment progress on the SageMaker console Endpoints page, which will display relevant metrics and status details. When the release is total, you can conjure up the model using a SageMaker runtime client and integrate it with your applications.

    Deploy DeepSeek-R1 using the SageMaker Python SDK

    To start with DeepSeek-R1 utilizing the SageMaker Python SDK, you will require to install the SageMaker Python SDK and make certain you have the essential AWS authorizations and environment setup. The following is a detailed code example that shows how to deploy and use DeepSeek-R1 for inference programmatically. The code for releasing the model is supplied in the Github here. You can clone the notebook and range from SageMaker Studio.

    You can run additional demands against the predictor:

    Implement guardrails and run reasoning with your SageMaker JumpStart predictor

    Similar to Amazon Bedrock, you can likewise utilize the ApplyGuardrail API with your SageMaker JumpStart predictor. You can create a guardrail utilizing the Amazon Bedrock console or the API, and execute it as displayed in the following code:

    Tidy up

    To prevent undesirable charges, complete the actions in this section to tidy up your resources.

    Delete the Amazon Bedrock Marketplace implementation

    If you released the model utilizing Amazon Bedrock Marketplace, total the following actions:

    1. On the Amazon Bedrock console, under Foundation designs in the navigation pane, choose Marketplace implementations.
  5. In the Managed releases area, find the endpoint you desire to erase.
  6. Select the endpoint, and on the Actions menu, forum.pinoo.com.tr choose Delete.
  7. Verify the endpoint details to make certain you're erasing the correct release: 1. Endpoint name.
  8. Model name.
  9. Endpoint status

    Delete the SageMaker JumpStart predictor

    The SageMaker JumpStart design you deployed will sustain costs if you leave it running. Use the following code to erase the endpoint if you desire to stop sustaining charges. For more details, see Delete Endpoints and Resources.

    Conclusion

    In this post, we checked out how you can access and deploy the DeepSeek-R1 model using Bedrock Marketplace and SageMaker JumpStart. Visit SageMaker JumpStart in SageMaker Studio or Amazon Bedrock Marketplace now to start. For more details, refer to Use Amazon Bedrock tooling with Amazon SageMaker JumpStart models, SageMaker JumpStart pretrained models, Amazon SageMaker JumpStart Foundation Models, Amazon Bedrock Marketplace, and Getting begun with Amazon SageMaker JumpStart.

    About the Authors

    Vivek Gangasani is a Lead Specialist Solutions Architect for Inference at AWS. He helps emerging generative AI companies construct innovative options using AWS services and accelerated compute. Currently, he is concentrated on developing strategies for fine-tuning and optimizing the inference performance of big language designs. In his leisure time, Vivek takes pleasure in hiking, watching movies, and attempting various foods.

    Niithiyn Vijeaswaran is a Generative AI Specialist Solutions Architect with the Third-Party Model Science group at AWS. His area of focus is AWS AI accelerators (AWS Neuron). He holds a Bachelor's degree in Computer Science and Bioinformatics.

    Jonathan Evans is an Expert Solutions Architect dealing with generative AI with the Third-Party Model Science group at AWS.

    Banu Nagasundaram leads product, engineering, and tactical partnerships for Amazon SageMaker JumpStart, SageMaker's artificial intelligence and generative AI hub. She is enthusiastic about developing services that help clients accelerate their AI journey and unlock business value.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
None
0
Labels
None
Assign labels
  • View project labels
Reference: albertinaskals/intunz#40